
Writing a Cypher Engine in Clojure

Dávid Szakállas (BME)

Gábor Szárnyas (BME, MTA)

3rd Budapest Clojure meetup 2018



AGENDA

Gábor:

 Graph databases

 Cypher language

 Query evaluation

Dávid:

 Graph exploration strategies

 Optimization

 How to compile patterns



GRAPHS

𝐺 = 𝑉, 𝐸 𝐸 ⊆ 𝑉 × 𝑉

Textbook definition

Flavours:

 directed/undirected edges

 labels

 properties



GRAPH DATABASES

pattern

matching

NoSQL family

Data model: property graphs = vertices, edges, and properties

analytics





CYPHER

„Cypher is a declarative, SQL-inspired language for describing 

patterns in graphs visually using an ascii-art syntax.”

MATCH (pers:Person)-[:PRESENTERS]->
(:Presentation)<-[:TOPIC_OF]->(proj:Project)

WHERE proj.name = 'ingraph'
RETURN pers.name

pers.name

David

Gabor



DBMS POPULARITY BY DATA MODEL

version 2.0 introduces 

the Cypher query language



OPENCYPHER SYSTEMS

 Goal: deliver a full and open specification of Cypher

 Relational databases:

o SAP HANA

o AGENS Graph

 Research prototypes:

oGraphflow (Univesity of Waterloo)

o ingraph (incremental graph engine)

(Source: Keynote talk @ GraphConnect NYC 2017)



USE CASES

 Analytics

o IT security

o Investigative journalism

 “Real-time” execution

o Fraud detection

o Recommendation systems



INGRAPH

 MTA-BME project

 PoC query engine for openCypher

 Primarily written in Scala

 Goals: 

o Provide continuous evaluation (incremental view maintenance)

o Cover standard openCypher constructs

o Does not work efficiently for one-time query execution

Szárnyas, G. et al.,

IncQuery-D: A distributed incremental model query framework in the cloud.

MODELS, 2014,

https://link.springer.com/chapter/10.1007/978-3-319-11653-2_40

https://link.springer.com/chapter/10.1007/978-3-319-11653-2_40






GRAPH QUERY PROCESSING APPROACHES

 Relational: projection, selection, join

o SAP HANA

o Agens Graph (PostgreSQL + Cypher)

o ingraph

 Relational + expand

o Neo4j

 Constraint satisfaction

o VIATRA (BME project since 2002): “local search” engine

o Our proposed openCypher engine (this talk)



RELATIONAL MODEL

person parent

Alice Sarah

Alice Bob

a b

Bob Sarah

Parent

Married

Person 

{ name: Alice } 

Person 

{ name: Bob }

Person 

{ name: Sarah } 

PARENT

PARENT
MARRIED

PROPERTY GRAPH

label

properties

edge type



EXPLORATION BASED METHODS

 given this graph  and query
Person 

{ name: Alice } 

Person 

{ name: Bob }

Person 

{ name: Sarah } 

PARENT

PARENT
MARRIED

MATCH (u:Person)
-[:PARENT]->

(f:Person)
-[m:MARRIED]->

(m:Person)
RETURN m, f

find an execution plan



EXPLORATION BASED METHODS

Person 

{ name: Alice } 

Person 

{ name: Bob }

Person 

{ name: Sarah } 

PARENT

PARENT
MARRIED

 DFT -> small memory footprint

 Small state-space -> less steps



EXPLORATION BASED METHODS

Goal: minimize state-space generated for a query. 

 Cost based optimizations

 Constraint satisfaction problems 

 SAT is an NP-full problem

 Greedy algorithm unsatisfactory



EXPLORATION BASED METHODS

Goal: minimize state-space generated for a query. 

 Iterative Dynamic Programming (IDP):

oGeneralization of DP and greedy algorithms

oPolynomial complexity

oMultiple variants

oWidely researched in the RDMS area

-> use iterative dynamic programming



FULL VS GREEDY VS IDP

⋮

:e _ -[_]-> _

MATCH (a)-[:e]->(b)
RETURN a, b



FULL VS GREEDY VS IDP

⋮

:e _-[_]->_

MATCH (a)-[:e]->(b)
RETURN a, b

a-[_]->_ _-[_]->b

1,0 100,0



FULL VS GREEDY VS IDP

⋮

:e _-[_]->_

MATCH (a)-[:e]->(b)
RETURN a, b

a-[_]->_ _-[_]->b

1 100

a-[:e]->b a-[:e]->b

2 0.02



FULL VS GREEDY VS IDP

⋮

:e _-[_]->_

MATCH (a)-[:e]->(b)
RETURN a, b

a-[_]->_ _-[_]->b

1 100
_-[_]->_

a-[_]->_ _-[_]->b

1 100

a-[:e]->b a-[:e]->b

2 0.02



FULL VS GREEDY VS IDP

⋮

:e _-[_]->_

MATCH (a)-[:e]->(b)
RETURN a, b

a-[_]->_ _-[_]->b

1 100
_-[_]->_

a-[_]->_ _-[_]->b

1 100

a-[:e]->b a-[:e]->b

2 0.02



FULL VS GREEDY VS IDP

⋮

:e _-[_]->_

MATCH (a)-[:e]->(b)
RETURN a, b

a-[_]->_ _-[_]->b

1 100

a-[:e]->b

2

_-[_]->_

a-[_]->_ _-[_]->b

1 100

a-[:e]->b a-[:e]->b

2 0.02



FULL VS GREEDY VS IDP

⋮

:e _-[_]->_

MATCH (a)-[:e]->(b)
RETURN a, b

a-[_]->_ _-[_]->b

1 100

a-[:e]->b

2

_-[_]->_

a-[_]->_ _-[_]->b

1 100

a-[:e]->b a-[:e]->b

2 0.02

IDP: Something in between...



MODEL-SENSITIVE APPROACH

G. Varró, F. Deckwerth, M. Wieber, A. Schürr,

An algorithm for generating model-sensitive search plans for pattern 

matching on EMF models, 

Software and Systems Modeling, 2013

 Derives cost based on the graph elements

 Object-oriented approach

 Different goal: model validation

Idea: adapt to property graphs.



ADAPTING IT

Requirements

 Variables for edges and vertices

 Estimate based on the graph

 Map to specialized indexer operations 

Difficulties

 No type information

 Original algorithm oblivious to edges with 

properties



CONSTRAINT DEFINITIONS

 Constraints and 

operations are 

separate

 Constraints can 

imply other 

constraints



OPERATIONS - CONSTRAINTS



OPERATIONS - CONSTRAINTS

IMMEDIATE



OPERATIONS – COSTS

 indexer support (context sensitive)

 Based on variables referenced in the constraints

 Given a (HasLabels a t) and a (Vertex a) constraints 

we can get the number of vertices for that label



SIMPLE PATTERNS

Conjunction of positive terms



NEGATIVE PATTERNS

Compiles to a single constraint with inner constraints.

Negation needs at least one bound variable



BENCHMARKING

design

execution



CONCLUSION

 Difficult to adapt this OO algorithm to property graphs

 Clojure is well fitted to the problem

 Subpar performance from the initial implementation

 Looking for maintainers

 Interested? Contact us: @szarnyasg @szdavid92

FTSRG/ingraph

Dávid Szakállas: Evaluation of openCypher Graph Queries with a Local Search-Based Algorithm.

Master’s thesis, Budapest University of Technology and Economics, 2017.

https://twitter.com/szarnyasg
https://twitter.com/szdavid92
http://docs.inf.mit.bme.hu/thesis-works/pdfs/szakallas-david-msc.pdf
http://docs.inf.mit.bme.hu/thesis-works/pdfs/szakallas-david-msc.pdf
https://github.com/FTSRG/ingraph/releases/tag/sre
https://github.com/FTSRG/ingraph/releases/tag/sre

