3rd Budapest Clojure meetup 2018 O

Writing a Cypher Engine in Clojure

David Szakallas (BME)
Gabor Szarnyas (BME, MTA)

Magyar Tudoméanyos - MC Gill
e/

Akadémia

AGENDA

Gabor:

= Graph databases

= Cypher language

*= Query evaluation

David:

= Graph exploration strategies
= Optimization

= How to compile patterns

GRAPHS
Textbook definition

G=(W,E) ECV xV

Flavours:
» directed/undirected edges
= labels

= properties

GRAPH DATABASES

NoSQL family
Data model: property graphs = vertices, edges, and properties

/> @ neOLI MEM
pattern %4

matching JanusGraph

analytics Graph /1/

GIRAPH

Person(2) Project(1) Institution(2) Presentation(1)
ADVISOR OF(1) Il peveLors(1) |l works AT(2) Il PRESENTS(2) Jll CONTRIBUTES TO(1)

TOPIC_OF(1)
STUDIES_AT ﬁ

P
-

STUDIES AT(1)

ingraph CONTRIBUTES_TO

v
2
P)
o! ¥
» \t;D

\
)

Writing
a Cypher PRESENTS Gahor WORKS_AT
engine

<id>: 62 languages: Scala,Clojure name: ingraph url: https://github.com/FTSRG/ingraph

CYPHER

,Cypher is a declarative, SQL-inspired language for describing
patterns in graphs visually using an ascii-art syntax.”

MATCH (pers:Person)-[:PRESENTERS]->
(:Presentation)<-[:TOPIC OF]->(proj:Project)

WHERE proj.name = "ingraph'’

RETURN pers.name

David
Gabor

WORKS_AT

PRESENTS Gabor

DBMS POPULARITY BY DATA MODEL

800 _
/z

Y@ openCypher

September 2017
Graph DBMS: 663.69

N
B

700

600

Sgneoqj

version 2.0 introduces
the Cypher query language

500

400

Popularity Changes

300

200

100

0
Jan 2013 Jul 2013 Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jan 2018

£ 2018, DB-Engines.com

OPENCYPHER SYSTEMS

= Goal: deliver a full and open specification of Cypher

= Relational databases:
o SAP HANA
o AGENS Graph

= Research prototypes:
o Graphflow (Univesity of Waterloo)
o ingraph (incremental graph engine)

Y - - MEM [TV ‘@ 9o LINKURIOUS
AGENS Graph [r]g_:]rC1pr] @ neoéj e red'S ‘ A GRAPH u GRAPHILEON f T “""\“m"','
IntelliJ IDEA Xn|08ic 4y tableau @ GraphAwar: 9 talend structr < Keylines

- /]
Tom Sawyer

(Source: Keynote talk @ GraphConnect NYC 2017)

USE CASES

= Analytics

Canon's Court
Linked To

O IT Security gertmgda

Paradise Papers - Appleby

o Investigative journalism gy e

registered office

s “Real-time” execution

o Fraud detection
o Recommendation systems

e Hichilema - Hakainde Sammy

mailing address; residential address

Wa | m a rt P.O. Box 30885; Lusaka; Zambia

Walmart Walmart uses Neo4j to optimize customer
experience with personal recommendations

sﬁe,eéol

ia Street;

@ AXMIN Inc.

INGRAPH

= MTA-BME project
= PoC query engine for openCypher
= Primarily written in Scala

= Goals:
o Provide continuous evaluation (incremental view maintenance)
o Cover standard openCypher constructs
o Does not work efficiently for one-time query execution

2 |Szarnyas, G. et al.,
| IncQuery-D: A distributed incremental model query framework in the cloud.
| | MODELS, 2014,

———— | https://link.springer.com/chapter/10.1007/978-3-319-11653-2_40

https://link.springer.com/chapter/10.1007/978-3-319-11653-2_40

Result and subresult operations. Rules for RETURN also apply to WITH.

[r] RETURN <«x1» AS «yi1», M1yl (T)
[r] RETURN DISTINCT «x1» AS «yl», 0 (Meqsy1,... (1))
[r] RETURN «x1», «aggr»(«x2») V4 agar(x2) () (see Sec. 3.1)
[r] WITH <x1» m((m 1) = S)
[s] RETURN «x2»
Unwinding and list operations
[r] UNWIND «xs» AS «x» Was—z(T)
[r] ORDER BY «x1» ASC, <«x2» DESC, Tt b2, (T)
[r] SKIP «s» LIMIT «1» Ar(r) 21
Combining results
[r] UNION [s] rJs
[r] UNION ALL [s] rs

Table 2: Mapping from openCypher constructs to relational algebra. Variables,
labels, types and literals are typeset as «v». The notation (p) represents patterns
resulting in a relation p, while [r] denotes previous query parts resulting in a
relation r. To avoid confusion with the “..” language construct (used for ranges),
we use --- to denote omitted query parts.

Language construct Relational algebra expression

Vertices and patterns. (p) denotes a pattern that contains a vertex <v».

(«v») Ow)

(«v»:«l1»:---:<1n») O : 11A--AIn)

(p)-[«e» :<ti |- | «tk»] > (<w») T (Wj e:tlV---Vtk](p), where e is an edge
(p)<-[«e»:«t1»|--- | «tk»] - («u») d o (Wj e:tlV .- Vtk](p), where e is an edge
(p)<—[«e» i<t |- |«tk>] > («w») $ (W) e:tlV .- Vtk] (p), where e is an edge
(p)-[«e»*«min» . . «max»] > («w») T (wj exmin | (p), where e is a list of edges

Combining and filtering pattern matches

MATCH (p1), (p2), Fedges of p1, p2, - (PLDAP2Da---)
ﬁizzg Ei;g Zedges of pl (P1) DI Fedges of p2 (P2)
OPTIONAL MATCH (p) {0} 2 Zedges of p (P)

OPTIONAL MATCH (p) WHERE (condition) | {{)} P<condition Fedges of p (P)

[r] OPTIONAL MATCH (p) Fedges of r () DI Fedges of p (D)
[r] WHERE «condition» O condition (")

[r] WHERE («v»:«11»:---:«1n») O v l=fA-Anl=in(T)

Tr] WHERE (p) r D

D88B88e @ |8 |eeesee

GRAPH QUERY PROCESSING APPROACHES

= Relational: projection, selection, join
o SAP HANA
o Agens Graph (PostgreSQL + Cypher)
o ingraph
= Relational + expand
o Neo4;

= Constraint satisfaction
o VIATRA (BME project since 2002): “local search” engine
o Our proposed openCypher engine (this talk)

RELATIONAL MODEL \

Parent
Alice Sarah
Alice Bob
Married \
a b PROPERTY GRAPH
Bob Sarah

Person Person

\ { name: Alice } { name: Sarah }
label
: MARRIED
properties _— PARENT :
edge type / erson

\ { name: Bob }

EXPLORATION BASED METHODS

= given this graph = and query
Person Pemon.) MATCH (u:Person)
{ name: Alice} { name: Sarah } -[:PARENT]->
(f:Person)
. T -[m:MARRIED]->
(m:Person)
Person RETURN m, f

{ name: Bob }

find an execution plan

EXPLORATION BASED METHODS

Person Person
0 {name: Alice } { name: Sarah }

. PARENT

1 \

(L, S, B) PARENT \\
) - Person
(A, S, B) { name: Bob }

= DFT -> small memory footprint
» Small state-space -> less steps

MARRIED

EXPLORATION BASED METHODS

Goal: minimize state-space generated for a query.

= Cost based optimizations
= Constraint satisfaction problems

= SAT is an NP-full problem
» Greedy algorithm unsatisfactory

EXPLORATION BASED METHODS

Goal: minimize state-space generated for a query.

= [terative Dynamic Programming (IDP):
oGeneralization of DP and greedy algorithms
oPolynomial complexity
oMultiple variants
oWidely researched in the RDMS area

-> use iterative dynamic programming

FULL VS GREEDY VS IDP

MATCH (a)-[:e]->(b)
RETURN a, b

FULL VS GREEDY VS IDP

MATCH (a)-[:e]->(b)
RETURN a, b

FULL VS GREEDY VS IDP

MATCH (a)-[:e]->(b)
RETURN a, b

FULL VS GREEDY VS IDP

MATCH (a)-[:e]->(b)
RETURN a, b

FULL VS GREEDY VS IDP

MATCH (a)-[:e]->(b)
RETURN a, b

FULL VS GREEDY VS IDP

MATCH (a)-[:e]->(b)
RETURN a, b

FULL VS GREEDY VS IDP

MATCH (a)-[:e]->(b)
RETURN a, b

IDP: Something in between...

MODEL-SENSITIVE APPROACH

G. Varro, F. Deckwerth, M. Wieber, A. Schiirr,

An algorithm for generating model-sensitive search plans for pattern
matching on EMF models,
Software and Systems Modeling, 2013 B O m]c

» Derives cost based on the graph elements
= Object-oriented approach
» Different goal: model validation

|dea: adapt to property graphs.

ADAPTING IT

Requirements

= Variables for edges and vertices

= Estimate based on the graph

= Map to specialized indexer operations

Difficulties
= No type information

» Original algorithm oblivious to edges with
properties

CONSTRAINT DEFINITIONS

= Constraints and
operations are
separate

= Constraints can
imply other
constraints

(defconstraint Known [known
(defconstraint Element [element] < Known [element
(defconstraint Edge [edge] < Element [edge
(defconstraint Vertex [vertex] < Element [vertex
(defconstraint HaslLabels [vertex labels

< Vertex [vertex] Known [labels
(defconstraint HasType [edge type] <

Edge [edge] Known [type
(defconstraint Property [element key value

< Element [element] Known [key] Known [value
(defconstraint DirectedEdge [source edge target

< Vertex [source] Edge [edge] Vertex [target
(defconstraint GenUnaryAssertion [x cond

< Known [x] Known [cond
(defconstraint GenBinaryAssertion [x y cond

< Known [x] Known [y] Known [cond
(defconstraint Constant [x value] < Known [X

OPERATIONS - CONSTRAINTS

(defop MyOp [& vars] preconditions* -> postconditions*)

(defop
GetEdges [source edge target] -> DirectedEdge [source edge target])
(defop
GetEdgesByType [source edge target typel
Known [type] —> DirectedEdge [source edge target]
HasType [edge typel)
(defop
AccessPropertyByKey [element key vall
Element [element] Known [key] -> Property [element key vall
:opts {:immediate true})
(defop
ExtendOut [source edge target]
Vertex [source]l -> DirectedEdge [source edge target])

OPERATIONS - CONSTRAINTS

(defop MyOp [& vars] preconditions* -> postconditions¥)

(defop

GetEdges [source edge target] -> DirectedEdge [source edge target])
(defop

GetEdgesByType [source edge target typel

Known [type] —> DirectedEdge [source edge target]

HasType [edge typel)

(defop

AccessPropertyByKey [element key vall

Element [element] Known [key] -> Property [element key vall

:opts {:immediate truel}) w—
(defop

ExtendOut [source edge target]

Vertex [source]l -> DirectedEdge [source edge target])

OPERATIONS - COSTS

(defweight op args estimator-body)

= indexer support (context sensitive)
= Based on variables referenced in the constraints

= Given a (HasLabels a t) and a (Vertex a) constraints
we can get the number of vertices for that label

def getAverageNumberOfLabelsPerVertices(): Float
def getNumberOfVerticesWithLabel(label: String): Int
def getNumberOfEdgesWithType(type™: String): Int

SIMPLE PATTERNS

Conjunction of positive terms MATCH (segment:Segment)
WHERE segment.length <= 0

RETURN
segment,
segment .length AS length

(pattern/pattern [:segment :length] []
[(bind proto-1/Vertex [:segment])
(bind proto-1/HasLabels [:segment :-segment-label])
(bind proto-1/Constant [:-segment-label "Segment"])
(bind proto-1/Property [:segment :-length-key :length])
(bind proto-1/Constant [:-length-key "length"])
(bind proto-1/GenBinaryAssertion [:length :-0 :-<=])
(bind proto-1/Constant [:-0 0])
(bind proto-1/Constant [:-<= <=])])

NEGATIVE PATTERNS

Negation needs at least one bound variable

MATCH (r:Route)-[:follows]->(swP:SwitchPosition),
(swP:SwitchPosition)-[:target]->(sw:Switch),
(sw:Switch)-[:monitoredByl->(sensor:Sensor)

WHERE [NOT (r)-[:requires]->(sensor)|

RETURN r, sensor, swP, sw

Compiles to a single constraint with inner constraints.

(bind (pattern/not

(pattern/pattern |[:route :sensor
(bind proto-1/Vertex [:route])
(bind proto-1/Vertex [:sensor])
(bind proto-1/DirectedEdge [:route :-requires :sensor])
(bind proto-1/HasType [:-requires :-requires-type])
(bind proto-1/Constant [:-requires-type "requires"])1))

[:route :sensor])

BENCHMARKING

PosLength RouteSensor ConnectedSegments

=N O1—=N =N O

BT T T
o
L]
- ®

oo oL ©

| PosLength RouteSensor ConnectedSegments

execution 2

(LOV) pojidwoo

1 2 £ 8 16 32 64 1 2 4 8 16 32 64 1 2 = 8 16 32 64
bk 19k 31k 67k 138k 283k 573k Bk 19k 31k 67k 138k 283k 573k 5k 19k 31k 67k 138k 283k 573k

Size

CONCLUSION

= Difficult to adapt this OO algorithm to property graphs
= Clojure is well fitted to the problem
= Subpar performance from the initial implementation

David Szakallas: Evaluation of openCypher Graph Queries with a Local Search-Based Algorithm.
Master’s thesis, Budapest University of Technology and Economics, 2017.

‘ ' FTSRG/ingraph

= | ooking for maintainers
= |nterested? Contact us: @szarnyasg @szdavid9?2

https://twitter.com/szarnyasg
https://twitter.com/szdavid92
http://docs.inf.mit.bme.hu/thesis-works/pdfs/szakallas-david-msc.pdf
http://docs.inf.mit.bme.hu/thesis-works/pdfs/szakallas-david-msc.pdf
https://github.com/FTSRG/ingraph/releases/tag/sre
https://github.com/FTSRG/ingraph/releases/tag/sre

